top of page

Study: Bacteria Protect Plants from Climate Stress

By 2050, when the world’s population will exceed 9 billion, food demand is expected to more than double.

Although agricultural improvements have boosted food production in the past 50 years, drought and salinization threaten more than half of the planet’s arable land. A team of researchers at Northern Arizona University’s Center for Ecosystem Science and Society recently published findings in the scientific journal Plant and Soil showing soil-borne bacteria could help mitigate crop losses due to drought.

Led by NAU doctoral student Rachel Rubin, the researchers conducted a meta-analysis, reviewing more than 50 scientific studies from throughout the world. When plants in the studies were provided with growth-promoting rhizobacteria (PGPR), a diverse group of organisms known for their root and rhizosphere colonizing ability, vegetable and grain yields increased 20 to 45 percent. The benefits of rhizobacteria were even greater in plants grown in a drought compared to their well-watered counterparts.

Like the human gut, plants have a tight relationship with their root microbiome, a relationship that has existed long before agriculture. Industrialized agriculture—extensive irrigation, inorganic fertilizers and artificial selection for high-yielding varieties—may have weakened this linkage, rendering plants more susceptible to extreme climate events.

bottom of page