Groundwater may play key role in predicting rainforest fires
Tropical rainforests have that name for a reason, occurring in high rainfall areas close to the equator with swirling mists shrouding their lofty heights and moist soil that squelches underfoot. Some rainforests in Southeast Asia, however, tell a different tale.
They have been drying up. This has caused devastating fires have been ravaging the area over the last two decades, like one in Indonesia in 1997 that caused more than 300,000 pollution-related deaths across Southeast Asia. And then, more recently, Indonesia’s fires of 2015 that scientists estimate contributed to the premature deaths of at least 100,000 people.
Deforestation and climate change are often blamed for rainforest fires. Studies have shown that if current trends continue, droughts and subsequent fire risk will increase in severity and frequency.
In this scenario, scientists say predicting fires and being able to forecast area that may be burned becomes important for better management.
Current fire prediction models use meteorological parameters like wind, atmospheric humidity, air temperature and rainfall, all of which affect moisture content and thus the flammability of forests.
But a recent study, published last month in the journal Nature Climate Change, puts forth a new factor: groundwater. The study, conducted by a group of researchers from Wageningen University in The Netherlands, examined available fire data for Borneo and found that incorporating groundwater dynamics into predictive models improves fire prediction accuracy.
NASA