top of page

Researchers Find Ways to Strip Fuel and Fertilizer From the Air

The world population is growing, as is energy demand, and we have long been able to see the consequences of climate change caused by the world's consumption of fossil resources. The IEA reports that global demand for energy was around 18 terawatts (TW) in 2013. This corresponds to 18,000,000 megawatts. Demand is expected to rise to around 25 TW in 2040. This means that our carbon emissions will be approximately 40 gigatonnes (GT) a year—compared to 32 GT in 2013.

Demand is not likely to fall, so we need to find a way to make the fuels and chemicals that are an integrated part of our everyday lives in a sustainable and fossil-free way. The transport sector accounts for approx. 19 per cent of global energy demand, while the production of chemicals accounts for around 8 per cent.

One way to escape dependence on oil is through electrocatalysis, which can transform molecules in our atmosphere (such as water, CO2, and nitrogen) into more expensive and useful products, such as hydrogen or methanol (fuel), and chemicals—like ammonia (used in fertilizers). In a new article just published in the Science journal, researchers from DTU and Stanford University in USA examine the current status of the field of electrocatalysis, and what it will take for the technology to be further developed.

Charles Haynes

bottom of page